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Abstract

Numerical weather prediction (NWP) models generally exhibit systematic errors in the forecast of near-surface weather
parameters due to a wide number of factors, including poor resolution of model topography, or deficient physical
parameterizations. In this work, deviations between 2 m-temperature observations and forecasts provided by the European Centre
for Medium-Range Weather Forecasts (ECMWF) are analysed at 12 synoptic stations located in Portugal. Systematic errors vary
considerably with geographical location and time of day as well as throughout the year. The Kalman Filter theory provides a
suitable tool to correct systematic errors of this type and therefore improve model forecasts. Accordingly, a Kalman Filter is applied
to 2 m-temperature forecasts issued in 2003, a year marked by one of the most severe heat waves in Europe. It is shown that the
developed methodology is versatile in adapting its coefficients to different seasons and weather conditions. The proposed Kalman
Filter allows an objective forecast correction for 2 m-temperature, reducing the bias of the forecasts at each station to values close
to zero, and improving the root mean square error from 10% up to over 70%, with respect to the raw ECMWF forecasts.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Reliable forecasts of surface temperature together
with an adequate characterization of its diurnal cycle
have a wide range of applications in Portugal, such as in
tourism planning and organization of sport events,
monitoring of wildfire risk and forest fire control,
agriculture and hydrology, amongst others. However,
numerical weather prediction (NWP) models usually
produce errors for forecast of near-surface weather
parameters, which are, to a great extent, due to the poor
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resolution of model topography, deficient physical
parameterizations, and uncertainties in cloud fields.
Forecasts provided by NWP models, generally present
both systematic (bias) and non-systematic (random)
errors. In contrast to systematic errors, random errors are
more difficult to quantify because of the complexity of
separating model inaccuracy from initial state error (e.g.,
Jung et al., 2005). Systematic errors may be quantified
more easily and are in general related to the resolution of
the NWP model that is unable to resolve sub-grid
phenomena, or represent sub-grid topography or small
water bodies. Inaccuracies in the physical/dynamical
equations of the model may introduce biases in the
forecasts. In this respect, an accurate prediction of near-
surface parameters (e.g., surface temperature and
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humidity, winds and precipitation) has been especially
challenging since it is determined to a large extent by the
physical realism of model representation of surface-
atmosphere interactions (e.g. Viterbo and Beljaars,
2002). Statistical correction of model errors may
therefore reveal to be extremely useful either to recover
estimations of parameters that are not model output
variables, or to improve parameters, describing e.g.
phenomena at scales not resolved by the model in an
adequate way. Furthermore, such techniques may be
used to customise forecasts by providing more accurate
values to specific locations. In this respect the
Portuguese Civil Protection Service (SNBPC) is worth
being mentioned as an end user greatly benefiting from
improvements on very short-range forecasts (of the
order of 3 h) of temperature at specific places, in
particular of its maximum and minimum values. Such
benefits mainly relate to the heat health warning system
and the defence system against wildfires. The dramatic
impacts on mortality and morbidity of the heat waves of
June 1981 and July 1991 led to the development in
Portugal of the first European health warning system.
Lisbon's ICARO's surveillance system (Nogueira,
2005) has started in 1999 as a result of the co-operation
between the Portuguese Health Observatory (ONSA)
and the Portuguese Weather Service (IM). ICARO's
surveillance system is operational from May, 15 to
September 30 and has proven to be extremely useful in
mitigating the impacts on population health of the
severe heat waves of August 2003 and August 2005
(Díaz et al., 2006). The system is composed by three
main components; (i) 3-day forecasts of maximum
temperature; (ii) forecasts of associated excess mortal-
ity; and (iii) computation of ICARO index which is an
indicator of the severity of the situation. ICARO index is
available to decision makers every morning and an
accurate 3-hour forecast of maximum temperature at the
local and regional levels is of invaluable assistance to
those that are responsible for issuing warnings and
alerts. Since 1988, the Portuguese Weather Service (IM)
has been involved in building up meteorological indices
of wildfire risk. A modified Nesterov index was used
until 1998 and from then on IM has relied on the
Canadian Fire Weather Index (FWI) System (van
Wagner, 1987), which consists of six components that
account for the effects of fuel moisture and wind on fire
behaviour. Temperature is one of the input parameters of
the first three components, i.e. the Fine Fuel Moisture
Code (FFMC), the Duff Moisture Code (DMC) and the
Drought Code (DC) that rate the average moisture
content of litter and organic layers of the soil. Two of the
fuel moisture codes (DMC and DC) are then combined
to produce the so-called Buildup Index (BUI) that is a
rating of the total amount of fuel available for
combustion. BUI is finally combined with the Initial
Spread Index (ISI) to produce the Fire Weather Index
(FWI) that has proven to be a suitable general index of
fire danger. The Portuguese defence system against
wildfires is operational from July 1 to September 30 and
improved very short-range forecasts of temperature for
critical locations would help decision makers in
assessing local risks and planning specific actions for
fire prevention.

The perfect prog approach (short for perfect
prognosis) was the first technique to take advantage of
the dynamical forecasts from NWP models (Klein et al.,
1959). Development of perfect prog regression equa-
tions is identical to the development of classical
regression equations in the sense that only observed
variables are used to predict observed predictands, i.e.,
only historical climatological data are used in the
development of the perfect prog technique (Wilks,
1995). The MOS technique (short for Model Output
Statistics) is the second, and most used approach to
incorporate NWP model outputs into statistical weather
forecasting (Glahn and Lowry, 1972). Unlike the perfect
prog case, MOS uses NWP forecasts as predictors for
both the development and the implementation phases.

Adaptative techniques, such as the KF (e.g. Kalman,
1960, 1963; Kalman and Bucy, 1961) present an
alternative solution to the standard regression models
and do not suffer from the two main drawbacks of the
above-mentioned methodologies, i.e. (i) the perfect prog
is unable to correct for NWP model biases; (ii) MOS
requires frequent updating of the statistical relationship
between the predictand variable and NWP output, due to
modifications in the NWP model itself (generally
updated twice a year). In fact, the KF has been widely
used in the last years as a useful tool to provide objective
corrections of NWP model forecasts at specific loca-
tions. Unlike MOS, adaptative regression is sequential,
and puts more weight to recent data than to older
observations (Kalnay, 2003). Persson (1991) used the
KF technique to correct 2 m-temperature forecasts in
Sweden, while Simonsen (1991) applied the KF to
improve wind and temperature prediction in Denmark.
Kilpinen (1992) has also applied the KF for statistical
interpretation of NWP forecasts and Homleid (1995) has
relied on the same adaptative technique to correct the
diurnal cycle of surface temperature forecasts in Nor-
way. Recent applications of the KF to the forecast of
near-surface parameters may be found in Galanis and
Anadranistakis (2002), Anadranistakis et al. (2004), Boi
(2004) and Crochet (2004).



Fig. 1. Map of Portugal showing the orography (m) and the location of the 12 meteorological stations studied.
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In this paper, we analyze the performance of the
European Centre for Medium-Range Weather Forecasts
(ECMWF) surface temperature forecasts over 12 ground
stations in Portugal (Fig. 1). The aim is (i) to evaluate
the performance of ECMWF forecasts over regions with
different characteristics, and under a range of weather
conditions; and (ii) to develop an objective correction
procedure, appropriate for use in Portugal. A simple KF
is then developed in order to correct systematic errors
present in surface temperature forecasts, the perfor-
mance of the technique being then assessed by com-
paring KF-corrected values against the raw ECMWF
output. Moreover, the KF is applied to 2 m-temperature
forecasts issued in 2003, a year marked by one of the
warmest summer seasons in Europe during the last
500 years (e.g., Luterbacher et al., 2004). The meteo-
rological conditions associated with the heat wave of
2003 were also associated to the most devastating
sequence of large wildfires ever recorded in Portugal
(Trigo et al., 2006). It is shown that the KF is versatile in
adapting its coefficients to different seasons and weather
conditions. Its performance in correcting biases as well



Fig. 2. Histograms of the difference between 2 m temperature
observations taken in Lisboa during January 2003, and the
corresponding 3-hourly forecasts of 2 m temperature (T2 m; upper
panel) and of the temperature at the lowest model level (Tl; lower
panel).
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as in predicting the extreme 2 m-temperatures during the
heat wave is put into evidence. The statistical enhance-
ment of NWP forecasts, despite the huge improvement
of NWP models during the last decades, is proved to be
a useful tool for weather forecasters as well as to a wide
range of end-users, in particular those involved in the
health and wildfire warning systems.

2. The Kalman filter

The KF model basically consists of a set of two
equations, the observation and the system equations.
The observation equation is well known from traditional
multiple linear regression methods and adjusts to the
best relationship between predictors and predictands.
In contrast to traditional methods, e.g., MOS, the
coefficients of the KF system equations vary in time
(Simonsen, 1991). This allows for a recursive updating
of regression coefficients, which may then adapt to
changes in NWP model and/or in meteorological
conditions. Homleid (2004) has pointed out that a
large database of forecasts and observations is very
useful when defining the KF model, but this is not a
prerequisite for applying the correction procedure.

In the KF approach measurements (i.e., new
information) subject to noise (errors) are used to update
the a priori understanding or expectation about the state
of a given system (or update the system parameters). In
the absence of measurements, the estimate is fully
determined by the imposed a priori knowledge. Thus,
the KF updates our knowledge about the state of the
system if we assume an a priori knowledge about this
state and are able to describe it by means of a probability
distribution function (Kirsch, 1996). In the current
application, recent observations of 2 m-temperature are
used to update the first guess given by a NWP model.

The filter equations may be split into two groups, the
time update and the measurement update equations. The
time update equations are responsible for the time
projection of the system state and of its covariance
matrix in order to generate an a priori estimate to the
next time step. The latter group provides the new
information (as obtained from the most recent observa-
tions available) into the a priori estimation in order to
obtain the best a posteriori estimation of the state and of
its covariance matrix (Welch et al., 2001). Essentially,
the KF is a prediction–correction algorithm, where the
time update equations are called prediction (or system)
equations, and the measurement update equations are
known as correction (or observation) equations.

The most important characteristic of the KF is its
recursive nature. The process is repeated at each time
step using the last a posteriori covariance matrix in
order to generate new a priori estimations. A brief
description of the adaptive procedure is given in Annex
I; a complete description of the KF model and the
derivation of equations may be found, e.g., in Gelb
(1974) or Priestley (1981).

3. Data and methodology

3.1. Data

The purpose of this work is the estimation of
unbiased forecasts of 2 m-temperature (T2 m) for syn-
optic stations in Portugal. In the current exercise we
use ECMWF temperature forecasts at the lowest
model level (Tl), as obtained from 12UTC analysis. The
forecast steps range from 12 to 33 h, and the study focus
on the period from 1 January to 31 December 2003. For
each synoptic station, forecasts of T2 m are obtained by
applying a KF to Tl values, corresponding to the nearest
inland point of the ECMWF reduced Gaussian grid
(N256), and without any correction for location or
topographic errors. ECMWF forecasts of T2 m at the
nearest inland ECMWF grid point are also used, but
only for purposes of comparison of error statistics of the
different forecasts available at the same location.

Tl is a prognostic model variable at the lowest model
level — about 10 m above the surface in the ECMWF
operational model for the one-year study period.
Besides ECMWF T2 m forecasts result from the
interpolation between the lowest level of the model
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(∼10 m) to 2 m above the model topography.
Estimations of T2 m depend on stability profile functions
and surface parameters such as roughness length for
heat, which are difficult to estimate (e.g., Malhi, 1996;
Trigo, 2002). The error statistics for Portuguese synoptic
stations are very similar for both Tl and T2 m. As an
example, Fig. 2 shows the histograms of the differences
between 2 m temperature observations, taken in Lisboa
during January 2003, and corresponding 3-hourly
forecasts of Tl and T2 m; the mean discrepancies between
observations and the two model outputs differ by less
than 0.5 °C.

The KF approach has been applied to 12 synoptic
stations located in Portugal, namely, Aveiro, Beja,
Bragança, Coimbra, Évora, Faro, Guarda, Leiria, Lisboa,
Penhas Douradas, Portalegre and Porto (Fig. 1). When
applied in an operational mode, the KF, and thus the
forecasts, are updated at the arrival of new observations.
For each time-slot, we will have updated forecasts every
3 h (since only 3-hourly observations are used), with lead
times ranging from 3 to 21 h. Taking into account the
above-described specific needs related to the health and
wildfire warning systems, results presented here corre-
spond to very short-range forecasts of 2 m-temperature,
with lead times of 3 h. Observations of 2 m-temperature
at these stations are regularly submitted to quality
control, a prerequisite for reliable estimation of verifi-
cation scores (e.g., Jolliffe and Stephenson, 2003).

3.2. Application of KF to ECMWF 2 m-temperature
forecasts

The aim of the current exercise is to correct 2 m-
temperature forecast errors. For this purpose, we define
our predictand yt, at a given time t, as the difference
between the model forecast TECMWF (i.e., the temper-
ature at the lowest model level, Tl, at the nearest model
grid point to the station) and the observation TOBS:

yt ¼ TECMWF � TOBSð Þt ð1Þ

We consider yt to be a function of the ECMWF
forecast error at the previous time t−1, i.e., (TECMWF−
TOBS)t− 1. Denoting by yt the vector of corrections to
2 m-temperature forecasts for the whole diurnal cycle
(00, 03, 06, 09, 12, 15, 18 and 21UTC) estimated at time
t, we have the following regression equation:

yt ¼ Ktxt þ et ð2Þ

where xt represents the regression coefficients up-
dated by the KF, ɛt denotes the observation noise, and
Kt the predictors, which are here assumed to be given
by:

Kt ¼ 1 TECMWF � TOBSð Þt�1

� � ¼ 1 yt�1½ � ð3Þ

It is also assumed that the a priori estimation of
coefficients (xt') valid for time t is given by the last KF
update bxt�1.

In the KF formulation used here, the coefficients in
Eq. (2) are given by the following system equation:

xt ¼ xt�1 þ ft ð4Þ

where the state error, ζt, and the measurement error ɛt,
are Gaussian zero mean white noise processes, i.e., with
covariance matrices (their dimension in the current
application is indicated in brackets):

E et e
T
t

� � ¼ Rt 8� 8ð Þ ð5Þ

E ftf
T
t

� � ¼ Wt 2� 2ð Þ ð6Þ

The algorithm operates sequentially in time in such a
way that at t−1 the KF produces an estimate bxt�1 of
xt− 1 with associated error covariance bPt�1. Eq. (4) is
then applied at time t in order to provide an a priori
estimate of xt' and its associated covariance Qt':

xVt ¼ bxt�1 ð7Þ

QVt ¼ bPt�1 þWt ð8Þ

Eqs. (7) and (8) are then combined with the
observation Eq. (2), at time t, in order to produce an
updated estimate bxt and of its covariance bPt:

Gt ¼ QVt KT
t KtQVt K

T
t þRt

� ��1 ð9Þ

bxt ¼ xVt þGt yt �KtxVt½ � ð10Þ

bPt ¼ QVt �GtKtQVt ð11Þ

The first estimation of the regression coefficients, or
initial state vector, x'

t=0
, was performed by fitting a

linear regression applied to a subset (1 month long) of
the available forecasts and respective observations. The
initial state vector x'

t=0
was estimated both at each

location (in a total of 12 stations) and for each of the
8 forecast times (00, 03, 06, 09, 12, 15, 18 and 21UTC),
resulting in 12×8=96 regression analyses.

One of the major difficulties in KF applications
concerns the estimation of the observation error



Table 1
Real height (m) of the 12 meteorological stations studied and ECMWF
model surface orography (m) at the respective nearest point

Station HSTATION (m) HECMWF (m)

Aveiro 5 119
Beja 246 153
Bragança 691 964
Coimbra 171 219
Évora 245 211
Faro 8 45
Guarda 1020 662
Leiria 24 148
Lisboa 104 81
P. Douradas 1380 662
Portalegre 597 287
Porto 93 197
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covariance matrix and the system error covariance
matrix, respectively, Rt (Eq. (5)) andWt (Eq. (6)). Here,
we have assumed (i) that both matrices are constant in
time, and (ii) that correlations of observation and system
errors between different forecast times are negligible,
Fig. 3. Monthly mean values of 2 m-temperature observations (solid
meaning that R and W may be reduced to diagonal
matrices.

The observation error covariance matrix R was
estimated as a by-product of the linear regressions that
were used for the first estimation of regression coef-
ficients x'

t= 0
, the diagonal of R corresponding to the

mean square error of each of those linear regressions.
The analysis of the regression coefficients x'

t=0
also

provided the first estimation of their covariance matrix,
Q'

t=0
(Eq. (8)).

The system covariance matrix, W, may be estimated
either by means of a statistical estimation procedure, e.g.
the Expectation Maximization algorithm (Dempster
et al., 1977), or by “tuning” it to make the KF behave
as requested (Homleid, 1995). In our case, the form of
W (with constant diagonal elements equal to 10−3) was
found empirically. Once an initial value for W was
chosen subjectively, the KF was implemented and the
results have been studied. The system covariance matrix
was tuned until the KF works as expected, i.e., allowing
the KF to react quickly to new conditions, but mini-
mising the errors in 2 m-temperature on the long run.
line) and forecasts (dashed line) at four locations in Portugal.



Fig. 4. Hourly values of 2 m-temperature observations (full line) and forecasts (dashed line) at four locations in Portugal. Curves represent averages
for winter, summer, and the whole year.
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3.3. Forecast error characteristics

The comparison between ECMWF raw forecasts of
2 m-temperature and observations at synoptic stations
during the year 2003 allows identifying both systematic
and random deviations. The systematic errors may be
related as follows to several shortcomings of the NWP
model:

a) Differences between topography heights in the
ECMWF NWP model and real station heights may
reach several hundred meters (Table 1), implying
large systematic errors in the temperature forecasts;

b) The spatial resolution of the NWP model (∼40 km)
may introduce systematic errors at coastal stations. It
was noted that temperature forecasts are either too
close to typical diurnal cycles over sea, or to inland
ones with overestimation of daily amplitudes.
c) Surface parameters or variables in the NWP model
(e.g. land cover, soil moisture, surface temperature)
may also induce systematic errors in temperature
forecasts, as they are directly related to the surface
radiative budget.

As shown below, the relative importance of different
error sources often depends on weather conditions and
may also varywidely by location, season, and time of day.

Monthly mean values of 3-hourly T2 m observations
(solid line) and forecasts (dotted line) for 2003 are
shown in Fig. 3 at 4 meteorological stations — Aveiro,
Guarda, Beja and Coimbra. Forecast monthly mean
values correspond to +12, +15, +18, +21, +24, +27,
+30 and +33 h forecast steps, as generated from
1200UTC analyses. Differences between mean observa-
tions and forecasts may vary significantly from station
to station and throughout the year. For all 12 synoptic



Fig. 5. Scatter plot of observations vs. forecasts for Porto, Leiria, Penhas Douradas and Bragança. The 1:1 line (dashed line) and the best linear fit
(solid line) between forecasts and observations are also plotted.
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stations analysed in this study, ECMWF model tends to
underestimate 2 m-temperature, except for Guarda
(Fig. 3) and Penhas Douradas (not shown), these two
stations being located over the mountainous region in
Central Portugal, where model topography is respec-
tively about 400 m and 700 m below the real station
heights.

Fig. 4 shows 3-hourly observations and forecasts,
averaged over winter, summer, and the whole year,
respectively, at 4 of the 12 studied locations. For most of
the studied stations, forecasted daytime temperatures are
generally cooler than observations (e.g., Lisboa in
Fig. 4), often leading to modelled diurnal amplitudes
lower than observations (e.g., Faro in Fig. 4). Daily
amplitudes are particularly underestimated for Évora
(Fig. 4), where the minimum (maximum) temperature
tends to be overestimated (underestimated). In the case
of Portalegre, an inland city like Évora (Fig. 1), fore-
casted minimum temperatures are generally cooler than
observations, which, in this case, result in an overesti-
mation of the modelled daily amplitude.

Fig. 5 shows scatter-plots of observations versus
forecasts of T2 m at 4 locations. Results reveal a con-
ditional bias for Porto (Leiria), corresponding to model
temperatures warmer than observations during daytime
(night-time), and cooler during night-time (daytime). At
the remaining 2 locations shown in Fig. 5 (Bragança and
Penhas Douradas), forecasts are systematically over-
estimated at Bragança and underestimated at Penhas
Douradas. These steady discrepancies in temperature
essentially result from the mismatch between model and
real station height; model orography is about 300 (700)
meters above (below) real station height at Bragança
(Penhas Douradas).

It is worth noting that the year of 2003 was char-
acterised in Europe by extremely warm weather during
the summer. Europe was exceptionally warm and dry
from May to the end of August (Luterbacher et al.,
2004) with persistent anticyclone conditions leading to
consecutive heat waves and drought (Fink et al., 2004;
Black et al., 2004). Fig. 6 shows the daily evolution of
observed (upper panel) and ECMWF forecasted (lower
panel) values of maximum and minimum 2 m-tempera-
tures at Lisboa during 2003 in comparison with the
respective daily values of the percentiles 10 and 90 of
observed 2 m-temperature for the period 1961–1990.
Differences between the time series of observed and
forecasted values are well apparent along the year, being
especially conspicuous when observed temperatures are
close to the climatological extremes. This is especially
true during the period between July and August,
especially during the first two weeks of August, when
the absolutes records of maximum and minimum tem-
peratures were exceeded. Arrows in the panels indicate



Fig. 6. Daily evolution of observed (upper panel) and ECMWF forecasted (lower panel) values of maximum and minimum 2 m temperature (°C; solid
lines) at Lisboa during 2003. For comparison purposes, daily values of the percentiles 10 (dotted lines) and 90 (dashed–dotted lines) of observed 2 m-
temperature for the period 1961–1990 period are also shown in both panels.
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two extreme events, namely a cold wave and a hot wave
that occurred in mid-January and in the beginning of
August. In both cases the tendency of the model to
underestimate both maximum and minimum tempera-
tures is well apparent. In particular it is clear that
ECMWF was not able to reproduce the observed heat
wave in Portugal.

Results shown in this section put into evidence the
existence of systematic errors and conditional bias in
ECMWF T2 m forecasts for Portuguese synoptic stations.
We will make use of the KF theory to adjust ECMWF
model output, in particular with the aim of improving
temperature forecasts for the whole daily cycle.
4. Results and discussion

Fig. 7 allows comparing “raw” and KF-corrected
ECWMF 2 m-temperature forecasts with observations at
Lisboa at 03UTC during the 2003 winter (January to
March) period and at 15UTC during the 2003 summer
(July and August) period, that respectively represent the
times of the day ofminimum andmaximum temperatures.
Overall, Fig. 7 puts into evidence the obtained improve-
ments in the KF-corrected temperature forecasts, which
follow the observations quite well during this anomalous
heat year, according to Fig. 6. It is worth noting in
particular, the marked drop in temperature observed on 12
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January, which was overestimated by the “raw” ECMWF
forecasts, and was reasonably well corrected by the KF
technique. A similar situation occurs on 15 February,
when ECMWF forecasts errors are greater than 7 °C.
During the summer period, ECMWF model seems to be
very conservative, being unable to forecast large varia-
tions from day to day. On the other hand the KF technique
is capable to adapt itself and correct the systematic errors.

Histograms of forecast errors (TFORECAST−
TOBSERVATION) for “raw” ECMWF and KF outputs
are shown in Figs. 8 and 9, respectively for Portalegre
and Lisboa at 03, 09, 15 and 21UTC. It is worth noting
that the KF error distributions are much closer to the
normal than the respective ECMWF histograms, and
present considerably smaller distribution tails, suggest-
ing that the KF is removing systematic errors in an
effective way. Moreover, KF forecast errors concentrate
within the range of ±1 °C at each location, and for the
whole diurnal cycle.

The Skill Score (SS) of the KF outputs with respect to
ECMWF raw model output provides a measure of the
improvement of corrected forecasts (e.g., Wilks, 1995):

SS ¼ RMSEECMWF � RMSEKALMAN

RMSEECMWF
� 100k ð12Þ

In the above expression, RMSEECMWF and RMSE-
KALMAN are the root mean square error (RMSE) of
Fig. 7. Temperature observations (black dots full line), ECMWF 2 m-tempera
KF (dashed line) for (a) Lisboa during 2003 winter period (January to March
15UTC.
ECMWF and KF 2m-temperature forecasts, respectively.
Positive (negative) values of SS indicate that the KF
provides better (worse) forecasts than ECMWF. Fig. 10
presents SS values at four locations, by time of the day.
Improvements in RMSE range between 10% and 80%,
staying around 50% for most cases. Meteorological
stations with best relative performances, i.e. with SS
values reaching over 70%, include Brangança and Penhas
Douradas, which presented high ECMWF model errors
associated to topography. Lower values of SS are obtained
at Beja, Évora and Faro, where KF results in improve-
ments of the order of 30–40% in the RMSE.

Tables 2–5 present the RMSE, bias and the standard
deviation of the errors (STD) of corrected (Kalman) and
uncorrected (ECMWF) forecasts at each station and at
verification times 00, 06, 12 and 18UTC, respectively. As
pointed out by the histograms in Figs. 8 and 9, the removal
of systematic errors results in values of bias close to zero,
while improvements in forecast accuracy are mirrored in
the reduction of RMSE, to values within the range of 1 to
1.5 °C. As in other statistical methods for forecast cor-
rection, the goal of the KF is the reduction of systematic
errors of themodel. However, it should be stressed that the
KF technique as applied to the 12 Portuguese synoptic
stations studied is also able of reducing conditional bias,
with consequent improvement of forecast accuracy.

As expected, the best SS were obtained for times or at
locations where ECMWF forecasts presented the
ture forecasts (pointed line) and temperature forecasts corrected by the
) at 03UTC; and (b) during 2003 summer period (July and August) at



Fig. 8. Histograms of forecast errors (model minus observations) for raw ECMWF 2 m-temperature (left) and for KF output (right), at Portalegre for
verification times 03, 09, 15 and 21UTC.
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highest systematic errors. This is the case of Porto,
where the bias of ECMWF raw forecast for 00UTC
(12UTC) is −2.0 °C (−0.2 °C), and where SS reaches
53% (36%).
As mentioned before, one of the main advantages of
the KF is its capability to adapt itself to singular meteo-
rological situations or to modifications in NWP model
characteristics. Fig. 11 shows an example of estimated



Fig. 9. As in Fig. 8, but at Lisboa.
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KF coefficients, for the whole 2003-year. The significant
changes in the KF coefficients during season transi-
tions – e.g., beginning of June, October, andDecember–
are worth noting. It is worth pointing out that the behav-
iour of the KF coefficients is particularly related with the
anomalous period of temperature described in Fig. 6.



Fig. 10. Skill Score values (based on the RMSE) of the KF with respect to ECMWF raw model output, for each forecast verification time, and for the
indicated stations.
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This fact emphasizes the advantage of using the KF
technique in extreme weather conditions, both in winter
and summer situations.

5. Conclusions

The KF technique has been widely used to correct
NWP model forecasts (Homleid, 1995; Galanis and
Anadranistakis, 2002; Anadranistakis et al., 2004; Boi,
2004; Crochet, 2004). In Portugal, the complex
orography and local effects such as sea breezes that
are not adequately resolved by NWP models, together
Table 2
RMSE, bias and error STD of the corrected (Kalman) and uncorrected
(ECMWF) forecasts for each station at 00UTC

00UTC RMSE (°C) BIAS (°C) STD (°C)

ECMWF KF ECMWF KF ECMWF KF

Aveiro 3.13 1.22 −2.30 0.13 3.88 1.21
Beja 1.48 1.08 0.29 0.02 1.45 1.07
Bragança 3.31 1.16 −2.86 0.03 4.37 1.15
Coimbra 2.19 1.25 −1.22 0.00 2.50 1.25
Évora 1.36 1.16 0.37 −0.05 1.30 1.16
Faro 1.53 1.08 0.18 −0.01 1.51 1.08
Guarda 2.09 1.23 0.55 0.02 2.01 1.22
Leiria 3.16 1.73 1.93 0.01 2.50 1.73
Lisboa 2.18 0.97 −1.62 −0.01 2.71 0.97
PDouradas 3.34 1.53 2.19 0.00 2.52 1.53
Portalegre 3.10 1.65 −1.14 0.02 3.30 1.64
Porto 2.91 1.35 −2.02 0.13 3.54 1.34
with the misrepresentation of model surface variables
result in (conditionally) biased forecasts of 2 m-
temperature. It was shown here that the KF designed
for 12 Portuguese synoptic stations, is able to signifi-
cantly improve 2 m-temperature forecasts, including a
more accurate reproduction of the forecasted diurnal
cycle. The KF is an extremely versatile technique, able
to adapt to different seasons/weather conditions,
including extreme events, such as the summer 2003
heat wave.

Over most locations and time of the day, the RMSE
of adjusted 2 m-temperature forecasts shows improve-
ments of 30 to 50%, reaching over 70% for areas where
Table 3
As in Table 2 but at 06UTC

06UTC RMSE (°C) BIAS (°C) STD (°C)

ECMWF KF ECMWF KF ECMWF KF

Aveiro 3.19 1.10 −2.31 0.03 3.93 1.09
Beja 1.60 0.98 0.13 −0.01 1.59 0.98
Bragança 2.80 1.15 −2.00 −0.01 3.44 1.15
Coimbra 2.22 1.04 −1.23 0.02 2.53 1.03
Évora 1.50 0.99 0.42 −0.01 1.44 0.99
Faro 1.70 1.08 0.40 0.00 1.65 1.08
Guarda 2.46 1.03 0.07 −0.05 2.45 1.03
Leiria 3.29 1.34 1.81 0.01 2.74 1.34
Lisboa 2.03 0.79 −1.51 0.01 2.53 0.78
PDouradas 3.30 1.30 1.38 −0.02 2.99 1.30
Portalegre 4.02 1.21 −1.87 −0.01 4.43 1.21
Porto 3.09 1.11 −2.25 0.01 3.82 1.11



Table 4
As in Table 2 but at 12UTC

12UTC RMSE (°C) BIAS (°C) STD (°C)

ECMWF KF ECMWF KF ECMWF KF

Aveiro 2.86 1.63 −0.01 0.15 2.86 1.62
Beja 2.04 1.48 −0.92 0.05 2.23 1.47
Bragança 3.65 1.69 −3.06 0.07 4.76 1.68
Coimbra 2.00 1.40 −0.62 0.02 2.09 1.39
Évora 2.14 1.37 −1.28 0.05 2.49 1.36
Faro 2.24 1.46 −1.56 0.01 2.72 1.46
Guarda 2.94 1.21 2.57 0.04 1.42 1.20
Leiria 2.97 1.89 −2.22 0.02 3.70 1.88
Lisboa 1.54 1.27 −0.14 0.05 1.54 1.26
PDouradas 5.04 1.63 4.48 0.06 2.30 1.62
Portalegre 2.09 1.37 0.42 0.00 2.04 1.37
Porto 2.79 1.78 −0.24 0.10 2.80 1.77

Fig. 11. Evolution of the KF coefficients estimated for Lisboa (15UTC
verification time) throughout the whole year.
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the representation of local topography in the model is
the poorest, and where model biases are the highest.
Over all studied locations and periods of the day, the KF
was able to provide unbiased forecasts, with reduced
STD (Tables 2–5). The decrease in the standard devia-
tion, generally associated to random errors (e.g.,
Murphy, 1995) is likely to be due to the elimination of
conditional bias, e.g., corresponding to systematic errors
associated to specific weather types, or seasons. The
good results obtained with the application of the KF
technique are clearly associated to its flexibility in
adapting to different synoptic situations. It is worth
mentioning, in particular, the quick changes of the filter
coefficients during transition periods between seasons.

Since the beginning of 2006, the ECMWF operational
NWP model has undergone significant changes (e.g.,
Miller and Untch, 2005), particularly in what concerns its
spatial resolution (T799 corresponding to about 25 km
horizontal resolution, and 91 vertical levels between the
surface and 0.1 hPa). The consequent improvement of the
Table 5
As in Table 2 but at 18UTC

18UTC RMSE (°C) BIAS (°C) STD (°C)

ECMWF KF ECMWF KF ECMWF KF

Aveiro 2.71 1.27 −0.08 0.05 2.71 1.26
Beja 1.60 1.07 −0.28 −0.01 1.62 1.07
Bragança 3.65 1.13 −3.25 −0.01 4.88 1.13
Coimbra 1.94 1.21 −0.85 0.00 2.11 1.21
Évora 1.68 1.10 −0.59 0.00 1.78 1.10
Faro 1.72 1.41 −0.41 0.02 1.76 1.40
Guarda 2.37 0.97 1.91 0.00 1.40 0.97
Leiria 1.65 1.51 −0.15 0.07 1.65 1.50
Lisboa 1.80 1.03 −0.38 −0.01 1.83 1.03
PDouradas 5.70 1.12 5.36 0.00 1.93 1.12
Portalegre 1.80 1.13 0.65 0.01 1.67 1.13
Porto 2.36 1.17 0.11 0.04 2.35 1.16
represented surface orography is likely to reduce model
biases associated to mismatches between station and
model height; the performance of the new model version
over Portugal is currently under study. Nevertheless
results of the current study are very encouraging, and
support the following lines of future work: (i) the use of
KF to provide maximum and minimum temperatures, as
suggested by the improvement of the adjusted tempera-
ture daily cycle; (ii) the application of the KF technique to
higher forecast steps; (iii) the extension to other variables
of interest, particularly near-surfacewind forecasts, which
present significant biases along the Portuguese coastal
areas. Further work will also focus on newmethodologies
to estimate KF parameters, such as the system and
observation noise statistics.
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