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Towards process-informed bias correction of
climate change simulations
Douglas Maraun1*, Theodore G. Shepherd2, MartinWidmann3, Giuseppe Zappa2, Daniel Walton4,5,
José M. Gutiérrez6, Stefan Hagemann7†, Ingo Richter8, Pedro M. M. Soares9, Alex Hall5

and Linda O. Mearns10

Biases in climate model simulations introduce biases in subsequent impact simulations. Therefore, bias correction methods
are operationally used to post-process regional climate projections. However, many problems have been identified, and
some researchers question the very basis of the approach. Here we demonstrate that a typical cross-validation is unable
to identify improper use of bias correction. Several examples show the limited ability of bias correction to correct and to
downscale variability, and demonstrate that bias correction can cause implausible climate change signals. Bias correction
cannot overcomemajor model errors, and naive applicationmight result in ill-informed adaptation decisions.We conclude with
a list of recommendations and suggestions for future research to reduce, post-process, and cope with climate model biases.

C limate scientists are confronted with a growing pressure
to support adaptation decisions and face the dilemma of
operationalizing what is still foundational research1,2. The

models often used to inform adaptation decisions—global coupled
atmosphere ocean general circulation models (GCMs), potentially
downscaled with regional climatemodels (RCMs)—have horizontal
resolutions often far coarser than those demanded, and suffer from
substantial biases3,4. To reduce biases and to overcome the scale gap
between the numerical model grid and the desired scale, climate
model output is almost routinely post-processed by bias correction
(often called bias adjustment) methods. A vast number of bias-
corrected national and global climate change projections have been
published5–13, have served as input for impact studies10,14–16 as well as
assessment reports17–19, and have been made available through data
portals13,20,21. A wide variety of bias correction methods are in use,
ranging from simple adjustments of the mean to flexible, potentially
multivariate, quantile mapping approaches22–24. Yet many problems
related to bias correction have been identified8,25–29. Thus, even
though bias correction is often considered a necessary step in
climate impact modelling24, the approach is prone to misuse, and
best practice still needs to be established30. Some authors even
question the very basis of bias correction31.

Current developments on bias correction have largely focused
on improving statistical methodology: to better match variability
and extremes24,32–34, the dependence between different climatic vari-
ables35,36, the location of features37, or to retain simulated trends6,11,32.
This focus has ignored a major issue: a key requirement of climate
model projections is credibility1,2,38. Here, we argue that current bias
correctionmethodsmight improve the applicability of climate simu-
lations, but in general cannot improve lowmodel credibility. Indeed,
bias correction may hide a lack of credibility or may even reduce

credibility. The way bias correction is often applied and evaluated
might ultimately lead to ill-informed adaptation decisions.

We start from the basic reason underlying the demand to bias
correct: all models are substantial simplifications of a real system.
Climate models are based on physical laws such as conservation of
energy, mass and momentum, and thermodynamic and radiation
laws. But models have a limited spatial resolution, their topography
is coarse, and they will never resolve nor represent all relevant
processes from planetary waves down to turbulence. Sub-grid
processes are simplified by parameterizations. As a consequence,
many relevant atmospheric, oceanic and coupled processes are not
realistically represented, with knock-on effects on other processes
even far away from where the primary biases occur39. Biases
in basic quantities such as mean and variance are therefore
commonplace, even for something as fundamental as global-mean
surface temperature3. Often, a realistic behaviour is achieved only by
tuning the model3. In short, climate model biases are severe enough
to, in principle, justify the use of bias correction techniques to render
model output more useful for impact studies.

We therefore argue that bias correction should not be dismissed,
but that a solid conceptual and process understanding of climate
model biases is required to successfully apply bias correction.
The extent to which biases can be mitigated by post-processing
depends on their origin. We present several examples, discuss
their correctability by state-of-the-art bias correction methods, and
propose alternative approaches and future directions of research.

Bias correction in a nutshell
We define a bias as the systematic difference between a modelled
property of the climate system and the corresponding real
property25,31,40–43. Such properties could be mean temperature,

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

1University of Graz, Wegener Center for Climate and Global Change, Brandhofgasse 5, 8010 Graz, Austria. 2Department of Meteorology, University of
Reading, PO Box 243, Reading RG6 6BB, UK. 3School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
4Institute of the Envionment and Sustainability, University of California, Los Angeles, California 90095, USA. 5Department of Atmospheric and Oceanic
Sciences, University of California, Los Angeles, California 90095, USA. 6Institute of Physics of Cantabria, CSIC - University of Cantabria, Avenida de los
Castros, s/n, 39005 Santander, Spain. 7Max Planck Institute for Meteorology, Bundestrasse 53, 20146 Hamburg, Germany. 8Japan-Agency for
Marine-Earth Science and Technology (JAMSTEC), 3173-25, Showa-machi, Kanazawa-ku, Yokohama 236-0001, Japan. 9Instituto Dom Luiz,
Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal. 10National Center for Atmospheric Research (NCAR), PO Box 3000, Boulder,
Colorado 80307, USA. †Present address: Institute for Coastal Research, Helmholtz Centre Geesthacht, 21502 Geesthacht, Germany.
*e-mail: douglas.maraun@uni-graz.at

764 NATURE CLIMATE CHANGE | VOL 7 | NOVEMBER 2017 | www.nature.com/natureclimatechange

http://dx.doi.org/10.1038/nclimate3418
mailto:douglas.maraun@uni-graz.at
www.nature.com/natureclimatechange


NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE3418 PERSPECTIVE
variance or a 100-year return value. The term ‘systematic’ refers to
all differences that are not due to sampling uncertainty. Biases are
typically assumed to be time-independent11,23,44,45, but in principle
may vary in time25,40–42. Some authors define a bias as the time-
independent error component of a model24,46,47. The problems we
discuss below occur irrespective of the specific bias definition.

As bias correction we consider all methods that calibrate
an empirical transfer function between simulated and observed
distributional parameters, and apply this transfer function to output
simulated by the consideredmodel. Bias correction according to this
definition is a mere post-processing.

We focus on two different types of methods which are broadly
representative of those commonly used: a simple adjustment of
the mean, and quantile mapping. A simple mean bias correction
would estimate a bias as the difference (or ratio for, for example,
precipitation) between simulated and observed mean over a
reference period, and adjust the simulated time series over a scenario
period by the estimated bias (by subtracting it, or rescaling).
Quantile mapping individually adjusts each quantile. The transfer
functions are then applied to climate change simulations under the
assumption that they are time-invariant.

Bias correction relies on observational reference data, which
should in many cases be considered a model product themselves.
This holds true in particular for gridded data sets. Related issues are
an important topic for bias correction, but are outside the scope of
this article.

The evaluation problem
To begin with, we demonstrate the difficulties in evaluating the
performance of bias correction. The evaluation of statistical models,
for example, in weather forecasting, is generally done by cross-
validation: the model is calibrated to a subset of the available data
only, the evaluation is carried out by assessing the prediction of the
remaining (independent) data. Cross-validation is widely used for
establishing skill of bias correction, often only for calibrated prop-
erties of the marginal distribution6,23,47–49 (some exceptions evaluate
temporal or spatial dependence24,27). Here we demonstrate that such
an evaluation is not suitable to establish bias correction skill.

Consider the rather absurd setting of bias correcting simulated
daily temperature from the Southern Ocean against observed daily
precipitation over central Europe during boreal winter. The corre-
spondingmodel grid boxes are simply taken from the exact opposite
side of the globe. Whereas the temperature field over the Southern
Ocean (mapped onto Europe) is very smooth (Fig. 1a,d), precipita-
tion in Europe has a distinct pattern controlled by distance to sea
and orography (Fig. 1b,e). But even though modelled temperature
and observed precipitation fields are essentially unrelated and both
fields show different long-term changes, the quantile mapping looks
reasonable for the validation period, for mean and high values
(Fig. 1c,f). The residual bias (Fig. 1g) between corrected model
and observation purely stems from the different trends in both
regions. The problem is especially severe for non-parametric quan-
tile mapping, as demonstrated for the grid box enclosing Venice
(Fig. 1h): even though the temperature and precipitation distri-
butions have completely different shapes, and both distributions
change substantially over time (mean precipitation +28%, mean
temperature −0.29K in the corresponding Southern Ocean grid
box), the quantile–quantile (QQ) plot looks reasonable also for the
validation period. In other words: cross-validation of calibrated
climatological properties is not able to identify the absurdity of
the chosen example, and is thus not sufficient to evaluate the per-
formance of bias correction. The reason for the failure is that, in
climate modelling, model and observations are not in synchrony
and predictive skill cannot, as in weather forecasting, be established
by cross-validation26. The evaluation is restricted to long-term dis-
tributional aspects only, and provided the sampling is adequate,

cross-validation will merely reproduce the long-term distribution.
But in a non-synchronous setting it is still possible to evaluate non-
calibrated aspects, in particular for the temporal and, if required,
spatial dependence structure. Such an evaluation would yield essen-
tial and indispensable information about the appropriateness of a
bias correction.

Bias correction under present conditions
Bias correction may introduce artefacts already for present climate
conditions which are invisible to an evaluation of marginal
distributional properties. As example, consider corrections of the
drizzle effect, that is, the fact that climate models often simulate
too high a number of wet days with very low intensities. Quantile
mapping adjusts the number of wet days by changing the least
wet days into dry days. The adjustment in turn improves the
representation of dry spells of typically up to about 20 days50.
But climate models have considerable deficiencies in representing
temporal variability beyond the drizzle effect. Dry spells are often
too short, for example, because the persistence of blocking highs
is typically under-represented51, or because a dry valley may be
represented as an exposed location by a typical climate model
with coarse topography. Whereas the drizzle effect may indeed
be correctable, an attempt to correct other, more fundamental
errors in the spell length distribution may result in unwanted
artefacts (Fig. 2). In many cases one may simply miss the long
spells (Fig. 2a), in some cases one may by chance even combine
short spells into long ones and therefore improve the overall spell
length distribution (Fig. 2b). But in a substantial amount of cases,
the wet-day adjustment might either produce too many short and
medium-length spells (Fig. 2c) or even too long spells (Fig. 2d).
This example highlights that bias correction is not a one-size-fits-
all approach, but needs to be user-tailored: is the overall wet-day
probability relevant or the representation of spell lengths? A careful
decision needs to be drawn, and a sensible adjustment carried out.
Other examples, where attempts to bias correct temporal structure
might cause severely misleading results, are the diurnal cycle of
precipitation or the onset of the rainy season8.

Bias correction may further be infeasible if the climate model
variable does not capture the relevant regional processes. Consider
a GCM that simulates reasonable El Niño/Southern Oscillation
(ENSO) variability, but does not reproduce the clustering of extreme
precipitation in Peru during El Niño events (Fig. 3a,b). Quantile
mapping trivially adjusts the distributions (Fig. 3d), but still the
result is meaningless as the wrong clustering is not improved
(Fig. 3c). In this example, already a visual inspection of the resulting
time series uncovers the bias correction problem. When evaluating
many grid boxes, an evaluation conditional on El Niño events might
be required. A similar representativeness problem may be caused
by a coarse model topography, which may act as an unrealistically
strong meteorological divide28.

In many cases bias correction is used to downscale to a finer
spatial resolution5,12,15,35,48,49. Current approaches, however, are un-
able to generate unexplained sub-grid day-to-day variability, and
may even introduce artefacts, for example, in the representation
of extreme precipitation27. But similar effects might also occur for
temperature fields in complex terrain. Consider temperature inver-
sions, a common feature in the Central Valley, California (Fig. 4).
A bias-corrected GCM will trivially reproduce the climatological
temperature difference of 2 K between a location in the valley and
a nearby location higher up in the Sierra Nevada. But whereas the
actual day-to-day temperature difference has a broad distribution—
with negative values indicating inversions—the bias-corrected dif-
ference is essentially constant (it varies slightly because quantile
mapping corrects different quantiles individually). Stochastic ap-
proaches explicitly modelling unexplained sub-grid variability may
thus be required in complex terrain or for highly variable fields.

NATURE CLIMATE CHANGE | VOL 7 | NOVEMBER 2017 | www.nature.com/natureclimatechange

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

765

http://dx.doi.org/10.1038/nclimate3418
www.nature.com/natureclimatechange


PERSPECTIVE NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE3418

46

47

48

49

50

51

52
La

tit
ud

e 
(°

 N
)

La
tit

ud
e 

(°
 N

)

53

54

55

16

46

47

48

49

50

51

52

53

54

55

0

50

100

150

200

250

300

Bias (mm)

Fr
eq

ue
nc

y

Observation (mm)

2 4 6 8 10 12 14 16

a b c

d e

g h

f

6 8 10
Longitude (° E)

12 14 166 8 10
Longitude (° E)

12 14 166 8 10
Longitude (° E)

12 14

0 2 4 6 8 10 12 0 20 40 60 80

0

20

40

60

80

M
od

el
 (°

C 
re

sp
. m

m
)

Calibration, uncorrected
Validation, uncorrected
Calibration, corrected
Validation, corrected

Figure 1 | Cross-validation problem. a–f, Quantile mapping from ERA40 daily boreal winter (DJF) temperature (◦C, Southern Ocean, 45◦ S–55◦ S,
175◦W–163◦W) to E-OBS daily precipitation (mm d−1, Central Europe, 45◦ N–55◦ N, 5◦ E–17◦ E), calibrated over 1961–1980. Mean (a–c) and
95th percentile (d–f) over validation period (1981–2000). a,d, Uncorrected ERA40. b,e, Observations. c,f, Corrected ERA40. g, Histogram of biases across
all grid boxes. h, QQ-plot for grid box close to Venice (see cross in a). A QQ-plot plots the quantiles of two distributions against each other, that is, for two
time series, the values are sorted separately and then plotted against each other. The correction function is based on linear interpolation between empirical
quantiles with a constant correction for new extreme values.

Bias correction under climate change conditions
Some artefacts of bias correction may appear only under changing
climatic conditions and may thus be invisible to evaluation against
present observations.

One cause of such artefacts are GCMs’ biases in the large-scale at-
mospheric circulation52,53, which themselves result from an insuffi-
cient resolution of the atmosphericmodel54, a coarse topography55,56
or from biases in the underlying sea surface temperature57–59. For
instance, over Europe the North Atlantic winter storm track is too
zonal inmostmodels and crosses Europe too far south53. Such biases
exert a strong control on regional climate26,60. They are inherited by
downscaling and are reflected in regional biases61.

It has been argued that biases in surface weather resulting from
circulation biases cannot be bias corrected26,30. For instance, when
the frequency of circulation types is misrepresented, bias correction

may increase biases for specific circulation types29. Here we further
show that bias correction in the presence of substantial circulation
biases may induce implausible future signals.

Consider precipitation projections based on a GCM with a
substantial southward bias of the Atlantic storm track, such that the
maximum of present-day winter precipitation in Western Europe is
shifted southwards by about 20◦ (Fig. 5a–c). The GCM simulates
a northward shift of the storm track. A mean bias correction
of winter precipitation will perfectly align simulated present-day
mean precipitation with observations, by damping precipitation
over Southern Europe, and amplifying it over Central and Northern
Europe. Applying this correction to the future simulation, however,
the northward shift of the uncorrected precipitation peak—
indicating a northward shift of the storm track—is transformed into
a southward precipitation shift.
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Figure 2 | Unrealistic dry spell lengths. a–d, Distribution of dry spell lengths (wet-day threshold 0.1 mm) at Tafjord (Norway; 7.41◦W, 62.23◦ N,
winter) (a), Constanta (Romania; 28.63◦ E, 44.22◦ N, winter) (b), Sion (Switzerland; 7.33◦ E, 46.22◦ N, winter) (c) and Rome (Italy; 12.58◦ E, 41.78◦ N,
summer) (d) of MPI-ESM-LR downscaled with CLM to a horizontal resolution of 0.44◦, 1971–2000. Black: observations (ECA-D90), blue: raw climate
model, red: corrected climate model. Long dry spells are typically under-represented even after a seasonal wet-day correction (a), although in some cases
the correction may improve the overall distribution (b). Often, artefacts are introduced for short (c) and long (d) spells.

In other words: in the presence of major circulation biases,
bias correction—even though the local climate change signal is
preserved—might create implausible patterns of surface climate
change. Such problems can be avoided by a careful climate model
selection: for a GCM with a lower circulation bias, the precipitation
bias correction preserves the northward precipitation shift consis-
tent with the storm track shift (Fig. 5f).

Two approaches have been suggested to correct atmospheric
circulation biases. First, to bias correct GCM fields prior to dynam-
ical downscaling62; and second to spatially shift simulated fields37.
Both approaches, trivially, correct biases in the climatological
atmospheric fields. The first approach, however, introduces incon-
sistencies in the atmospheric dynamics: for instance, individual
storms are—in the GCM—still generated at the wrong position of
the polar front and then—in the RCM—interact with the corrected
climatological polar front. The second approach ignores that the
simulated position of circulation features is intricately linked to
the model orography, simulated land–sea contrasts and sea surface
temperature biases, and thus introduces inconsistencies with these
model properties.

Another cause of artefacts is the modification of the climate
change signal by variance-adjusting bias correction methods8,27,63.
A debate has arisen whether these trend modifications might
actually improve or deteriorate the raw climate change signal40,64,
and several trend-preserving bias correction approaches have been
developed11,32,65,66. We argue that this issue cannot be resolved
based on purely statistical arguments. Again, one needs to refer to
process understanding.

Obviously, a credibly simulated trend should not be altered by any
post-processing. In such a case, the assumption of a time-invariant
correction is fulfilled and a trend-preserving bias correction is the
method of choice. Often, however, climate model biases depend
on the actual state of the climate system25,41,67, so in a changing
climate they are not time-invariant. Two questions arise: first, in

what situations are climate model trends implausible? And second,
in which situations could bias correction methods such as quantile
mapping potentially improve such trends?

Many cases have been identified where climate models may
simulate implausible changes of large-scale climatic phenomena,
because the underlying processes are not realistically represented.
Prominent examples are the representation of ENSO feedbacks68,69,
the Indian summer monsoon70–72, the influence of increased
diabatic heating on the intensification of extratropical cyclones73,
or European blocking51. Current bias correction methods will
not succeed in improving these changes, as they result from
fundamental climate model errors30.

At the regional scale, misrepresented land-surface interactions
may result in implausible climate change trends. For instance,
models simulating unrealistically low summer soil moisture tend
to over-represent summer temperature increases74,75; similarly the
simulated increase of spring temperature is tightly linked to snow-
albedo feedback strength74. Furthermore, trendsmay be implausible
as a result of inadequately parameterized sub-grid processes. For
instance, there is evidence that the response of summer convective
precipitation extremes to global warming is misrepresented by
regional climate models with parameterized convection76,77.

In such situations, it has been argued that quantile mapping
may improve implausible trends40,64, because its correction is value-
dependent: a simulated value of, say, 25 ◦C will be adjusted with
a specific correction irrespective of the actual state of the climate
system—that is, in present and future climate. The distributions
typically adjusted by quantile mapping are mostly spanned by
day-to-day variability, which is mainly caused by the passage of
different types of air masses. Under climate change, the properties
of air masses themselves will change. If a temperature of 25 ◦C
corresponds to a rare, sunshiny day in present climate, such a
temperature might correspond to an overcast rainy day in a warmer
climate. It is thus conceivable that the value dependence of biases
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found for present-day climate40 might be different in the future. The
same reasoning can be made from a timescale point of view: as bias
correction is calibrated on daily timescales, also the modification of

the climate change signal stems from the rescaling of modelled day-
to-day variability27,63. Therefore, a trend modification by quantile
mapping can only be sensible if—in a given context—the transfer
function calibrated on short timescales can sensibly be applied to
correct biases on long timescales.

We illustrate this issue with spring temperature trends in
mountainous terrain. Consider again the example from California
(Fig. 6). A GCM misses the complex topography of the region
and thus simulates a rather smooth temperature field for present
climate (Fig. 6a). Quantile mapping trivially produces the correct
present temperature fields (Fig. 6b). Similarly, a high-resolution
RCM simulates a realistic temperature field (Fig. 6c). The RCM
also simulates a plausible climate change signal which varies
systematically across topography (Fig. 6f): at high elevations, the
warming is amplified by the snow-albedo feedback. The climate
change signal of the GCM, however, is again unrealistically smooth
(Fig. 6d); no elevation-dependent warming is produced. A trend-
preserving bias correction would fully inherit this implausible
climate change signal. Standard quantile mapping modifies the
large-scale changes, but in an unsystematic way (Fig. 6e). We do not
knowwhether the RCM simulation is correct, but the preserved and
bias-corrected GCM signals are highly implausible.

Thus, bias correction is trapped in a fundamental dilemma: in
situations where the driving model simulates a credible change, a
trend-preserving bias correction11,32 is a sensible choice. In many
cases, however, we may have strong evidence that the simulated
regional climate change is implausible—we would like to improve
the change. Standard quantile mapping modifies simulated trends.
But as discussed above and demonstrated for the snow-albedo
feedback, we know that these modifications may not be physically
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justified. Here, one would have to assess the raw and modified
changes on a case-by-case basis, referring to the relevant climatic
processes and their model representation.

Ways ahead
We presented examples of artefacts that may occur when bias
correction is applied without considering the underlying processes.
These examples illustrate that bias correction is recommended
only if, in a given context, the following assumptions hold: first,
relevant processes are reasonably well captured by the chosen
climate models, including the temporal structure (Fig. 2) and
location (Fig. 5) of the large-scale circulation, as well as the regional
response to large-scale processes (Fig. 3) and local feedbacks
(Fig. 6). Second, the climate models resolve the local spatial–
temporal variability (Fig. 4) and climate change (Fig. 6). Over
areas where some of these assumptions are not valid, the bias-
corrected output should be handled with great care. To avoid the
related artefacts, we advocate research along four major strands.
Process understanding should informbias correction already during
the climate model selection, as part of the actual bias correction
procedure, when evaluating the correction and when shifting to
alternative approaches.

Understandingmodel biases. Any regional climate projection that
is intended to serve for decision making relies on a realistic
simulation of all relevant processes controlling climate change. It has
thus to be recognized that the appropriateness of a bias correction
is only partly a statistical issue, but importantly an issue of the
credibility of the driving model. Thus it is important to understand
the origins of model biases, from the large-scale circulation to
regional-scale forcings and feedbacks.

Emergent constraints78 are a promising approach to understand
the influence of model biases in present climate on the climate
change signal. The essence of this approach is to identify strong
statistical relationships between an observable feature of the
simulated present climate and a future climate change signal in a
large ensemble of climate models. If the statistical relationship is
associated with robust physics, then the most realistic models in
the present climate can be declared to have the most credible future
climate change signal. Basically, emergent constraints allow one to
determine which present climate biases are most consequential for
future climate change signals. Emergent constraints have already
been applied extensively to global-scale processes and feedbacks.
However, there is no reason they cannot be applied to regional-
scale processes, either in ensembles of global models or associated
downscaled data products. Examples are the influence of location
biases in the large-scale atmospheric circulation on regional
precipitation changes79, or the influence of biases in snow-albedo
feedbacks on the regional warming signal80. We advocate searching
for emergent constraints along these lines at the regional scale. This
technique would exploit regional biases to improve the credibility of
future climate change signals, instead of trying to get rid of them in
some unphysical way.

As discussed above, a key issue is also to understand the
relationship of biases across timescales: how do biases in day-to-day
or interannual variability translate into biases in the climate change
signal? Identifying such linkages may help to judge the feasibility of
trend modifications.

Given that fundamental model errors cannot be corrected by
bias correction30, we advocate for a region-targeted selection of the
driving GCMs prior to any downscaling exercise. The aim of such a
procedure would neither be to identify the overall best performing
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Figure 6 | Implausible sub-grid climate change signal. Spring (MAM) daily mean temperature (◦C) in the Sierra Nevada and Central Valley, California,
USA. a–c, Present climate (1981–2000 average). d–f, Simulated change (2081–2100 average minus 1981–2000 average, RCP8.5 scenario93).
a,d, GFDL-CM3 GCM, bilinearly interpolated to 8 km grid. b,e, Corrected GCM (for present by construction identical with observations at 8 km horizontal
resolution92). c,f, WRF RCM at 3 km horizontal resolution, driven with GFDL-CM3 climate change signal85. Whereas the RCM simulates plausible strong
elevation-dependent warming (the strongest temperature increase in the Sierra Nevada mountains), the bias correction modulates the GCM change
unsystematically and not related to elevation.

GCM, nor to discard models simulating biased surface variables.
Rather, it would be to discard those GCMs that unrealistically
simulate the processes controlling the regional climate of interest,
and those that have strong location biases in the large-scale
atmospheric circulation (see Fig. 5). Of course, the selection has
to account in some manner for the range of uncertainty in global
climate sensitivity.

There is realistic hope that further model improvements
and increased model resolution may improve the representation
of both local and large-scale processes54,58,81–83. The resulting
reduction in location biases and the increase in credibility of
future projections will render subsequent bias correction a more
defensible approach.

New bias correction approaches. We identified two major
limitations of current bias correction methods: their difficulties in
downscaling to finer spatial scales, and their inability to improve
the local climate change signal. To address both these issues, we
advocate the development of new methods, combining advanced
statistical modelling with physical understanding.

The downscaling problem requires stochastic approaches
which generate sub-grid spatial variability: to simulate fine-scale
precipitation fields, or to simulate sub-grid temperature variations
such as inversions. Recently it has been proposed to carry out the
bias correction at the grid-box scale, and then to stochastically

downscale to finer scales84. More realistic fields can be obtained by
including process information, for example, by conditioning the
downscaling on the atmospheric circulation29.

As laid out above, a misrepresentation of regional feedbacks may
result in an implausible regional climate change signal, and quantile
mapping will probably not be able to improve it. Avenues should
be explored to explicitly account for regional-scale processes and
feedbacks for improving the climate change signal in the statistical
post-processing. One such avenue is, again, process-based bias
correction. For instance, summer temperature biases may depend
on temperature because of soil moisture feedbacks. Here it has been
suggested to condition the correction on simulated soil moisture67.
Another avenue is the use of emulators of high-resolution RCMs,
which simulate a credible climate change signal. For instance, local
variations in the warming signal could be statistically expressed by
covariates such as elevation, continentality or large-scale warming
patterns. These expressions can be calibrated across a range of
dynamically downscaled GCMs, and then applied to statistically
downscale the climate change signal of other GCMs85. Such
emulators could also be developed for other regional processes such
as convection: measures of stability andmoisture convergence could
serve as input to emulate high-resolution convection permitting
models. Thereby the representation of extreme events could be
improved, a weak point of essentially all statistical post-processing
methods so far.

770

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE CLIMATE CHANGE | VOL 7 | NOVEMBER 2017 | www.nature.com/natureclimatechange

http://dx.doi.org/10.1038/nclimate3418
www.nature.com/natureclimatechange


NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE3418 PERSPECTIVE
Evaluating bias correction. None of the artefacts we presented
would have been identified by a standard cross-validation of
marginal aspects. Rigorous standards for evaluating bias correction
methods need thus to be developed. These should encompass
temporal as well as process-oriented aspects86. For instance, an
investigation of the spell length distribution (Fig. 2), or an evaluation
conditional on the state of the relevant climatic phenomenon
(Fig. 3) may help to reveal bias correction problems. In any
case, the resulting bias-corrected time series should be—at least
for some selected grid boxes—visually inspected and compared
with observational data. A useful indicator for an unphysical bias
correction is the dis-similarity between modelled and observed
distribution (Fig. 1): major differences point to a misrepresentation
of key processes, and a bias correction is unlikely to be sensible. In
any case one should investigate the projected signals for implausible
change (Figs 5 and 6). The use of pseudo-realities for evaluating
simulated trends86 should further be explored.

Alternative approaches. Finally, we advocate exploring alternative
approaches in any given context. In some cases, perfect prognosis
statistical downscaling and change factor weather generators22 may
be more appropriate than bias correction. In other cases, response
surfaces87 with qualitative input of possible climate changes might
suffice to obtain decision-relevant information, or expert knowledge
combined with raw climate model simulations might provide useful
information. Location biases of the atmospheric circulation may be
reduced by surrogate climate warming studies88. Finally, storyline
simulations of how single but relevant past events might look in
a warmer future may substantially improve the representation of
local feedbacks: they reduce computational costs and thereby enable
much higher model resolutions89.

Final remarks
Bias correction is not a Swiss Army knife, many issues remain
unresolved, and research is needed to understand its limitations and
to develop new concepts for mitigating the effects of climate model
biases. Bias correction is not a purely statistical problem and cannot
overcome fundamental deficiencies in climate models.

We recommend carrying out any bias correction or downscaling
based on solid knowledge about the relevant climatic phenomena
and the ability of the employed climate models to simulate them.
To identify implausible results, a successful bias correction thus
requires a close collaboration with global and regional climate
modellers as well as experts both in the relevant large-scale climatic
phenomena and the local weather and climate of the target region.
We recommend a concerted action among all involved disciplines
to build up the necessary knowledge and to develop best practice
guidelines to make bias correction a rigorous science.

In any case, it is essential to disclose relevant expert decisions
affecting the results and to transparently discuss the usefulness
and limitations of the output with users, in particular as the
use of climate model data by non-experts is more and more
operationalized by climate service providers2.
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