Ribeiro A. F.S., Russo A., Gouveia C. M., Pires C. A.L. (2020) Drought-related hot summers: A joint probability analysis in the Iberian Peninsula. Weather and Climate Extremes, 2020, 30: 100279.
Ribeiro, A. F. S., Russo, A., Gouveia, C. M., Páscoa, P., and Pires, C. A. L. (2019) Probabilistic modelling of the dependence between rainfed crops and drought hazard. Nat. Hazards Earth Syst. Sci., 19, 2795–2809, https://doi.org/10.5194/nhess-19-2795-2019
Pires CAL, Hannachi A (2017) Independent Subspace Analysis of the Sea Surface Temperature Variability: Non-Gaussian Sources and Sensitivity to Sampling and Dimensionality. Complexity Volume 2017, Article ID 3076810, 23 pages; https://doi.org/10.1155/2017/3076810
Paredes P, Martins DS, Cadima J, Pires J, Pereira LS (2017) Accuracy of daily PM-ETo estimations with ERA-Interim reanalysis products. European Water 59: 239-246, 2017, https://www.ewra.net/ew/issue_59.htm
Perdigão RAP, Pires CAL, Hall J (2016) Synergistic Dynamic Theory of Complex Coevolutionary Systems: Disentangling Nonlinear Spatiotemporal Controls on Precipitation.
Pires CAL, Ribeiro AFS (2016) Separation of the atmospheric variability into non-Gaussian multidimensional sources by projection pursuit techniques. Clim Dyn (2017) 48:821–850, https://doi.org/10.1007/s00382-016-3112-9
Martins DS, Paredes P, Raziei T, Pires C, Cadima J, Pereira LS (2016) Assessing reference evapotranspiration estimation from reanalysis weather products. An application to the Iberian Peninsula. Int. J. Climatol. 37: 2378–2397 (2017), DOI: 10.1002/joc.4852
Ribeiro A.F.S., Pires C.A.L. (2015) Seasonal drought predictability in Portugal using statistical–dynamical techniques. Phys. Chem. Earth., doi:10.1016-j.pce.2015.04.003
Pires C., Perdigão R. (2014) Non-Gaussian interaction information: estimation, optimization and diagnostic application of triadic wave resonance. Nonlin. Processes Geophys. Discuss., 1, 1539–1602, 2014, doi:10.5194/npgd-1-1539-2014.
Pires C., Perdigão R.A.P. (2013) Minimum Mutual Information and Non-Gaussianity through the Maximum Entropy Method: Estimation from Finite Samples. Entropy 2013, 15(3), 721-752, doi:10.3390/e15030721
Berre L., Monteiro M.J., Pires C.A. (2013) An impact study of updating background error covariances in the ALADIN-France data assimilation system. Journal of Geophysical Research - Atmospheres, 118, 1-12, doi:10.1002/jgrd.50847
Pires C.A., Perdigão R.A.P. (2012) Minimum Mutual Information and Non-Gaussianity Through the Maximum Entropy Method: Theory and Properties. Entropy, 14, 1103-1126. doi:10.3390/e14061103, URL: http://www.mdpi.com/1099-4300/14/6/1103
Pires C.A., Talagrand O., Bocquet M. (2010) Diagnosis and impacts of non-Gaussianity of innovations in data assimilation. PHYSICA D-NONLINEAR PHENOMENA, 239, 17, 1701-1717, doi:10.1016/j.physd.2010.05.006
Bocquet M., Pires C.A., Wu L. (2010) Beyond Gaussian Statistical Modeling in Geophysical Data Assimilation. MONTHLY WEATHER REVIEW, 138, 8, 2997-3023, doi:10.1175/2010MWR3164.1