Publications

Surface circulation in the Gulf of Cadiz: Model and mean flow structure

Peliz A, Dubert J, Marchesiello P, Teles-Machado A
J. Geophys. Res., 112, C11015, doi:10.1029/2007JC004159

Download PDF

Abstract

The mean flow structure of the Gulf of Cadiz is studied using a numerical model. The model consists of a set of one-way nested configurations attaining resolutions on the order of 2.6 km in the region of the Gulf of Cadiz. In the large-scale configuration, the entrainment of the Mediterranean Water is parameterized implicitly through a nudging term. In medium- and small-scale nested configurations, the Mediterranean outflow is introduced explicitly. The model reproduces all the known features of the Azores Current and of the circulation inside the Gulf of Cadiz. A realistic Mediterranean Undercurrent is generated and Meddies develop at proper depths on the southwest tip of the Iberian slope. The hypothesis that the Azores Current may generate in association with the Mediterranean outflow (β-plume theories) is confirmed by the model results. The time-mean flow is dominated by a cyclonic cell generated in the gulf which expands westward and has transports ranging from 4 to 5 Sv. The connection between the cell and the Azores Current is analyzed. At the scale of the Gulf, the time-mean flow cell is composed by the westward Mediterranean Undercurrent, and by a counterflow running eastward over the outer edge of the Mediterranean Undercurrent deeper vein, as the latter is forced downslope. This counterflow feeds the entrainment at the depths of the Mediterranean Undercurrent and the Atlantic inflow at shallower levels. Coastward and upslope of this recirculation cell, a second current running equatorward all the way along the northern part of the gulf is revealed. This current is a very robust model result that promotes continuity between the southwestern Iberian coast and the Strait of Gibraltar, and helps explain many observations and recurrent SST features of the Gulf of Cadiz.