Meteosat Land Surface Temperature Climate Data Record: Achievable Accuracy and Potential Uncertainties

Duguay-Tetzlaff A, Bento VA, Göttsche FM, Stöckly R, Martins JPA, Trigo IF, Olesen F, Bojanowski JS, DaCamara CC, Kunz H
Remote Sens. 2015, 7(10), 13139-13156;

Download PDF


The European Organization for the Exploitation of Meteorological Satellites’ (EUMETSAT) Meteosat satellites provide the unique opportunity to compile a 30+ year land surface temperature (LST) climate data record. Since the Meteosat instrument on-board Meteosat 2–7 is equipped with a single thermal channel, single-channel LST retrieval algorithms are used to ensure consistency across Meteosat satellites. The present study compares the performance of two single-channel LST retrieval algorithms: (1) A physical radiative transfer-based mono-window (PMW); and (2) a statistical mono-window model (SMW). The performance of the single-channel algorithms is assessed using a database of synthetic radiances for a wide range of atmospheric profiles and surface variables. The two single-channel algorithms are evaluated against the commonly-used generalized split-window (GSW) model. The three algorithms are verified against more than 60,000 LST ground observations with dry to very moist atmospheres (total column water vapor (TCWV) 1–56 mm). Except for very moist atmospheres (TCWV > 45 mm), results show that Meteosat single-channel retrievals match those of the GSW algorithm by 0.1–0.5 K. This study also outlines that it is possible to put realistic uncertainties on Meteosat single-channel LSTs, except for very moist atmospheres: simulated theoretical uncertainties are within 0.3–1.0 K of the in situ root mean square differences for TCWV < 45 mm.