Toward an Integrated Set of Surface Meteorological Observations for Climate Science and Applications

Thorne PW, Allan RJ, Ashcroft L, Brohan P, Dunn RJH, Menne MJ, Pearce PR, Picas J, Willet KM, Benoy M, Bronnimann S, Canziani PO, Coll J, Crouthamel R, Compo GP, Cuppett D, Curley M, Duffy C, Gillespie I, Guijarro J, Jourdain S, Kent EC, Kobuta H, Legg TP, Li Q, Masumoto J, Murphy C, Rayner NA, Rennie JJ, Rustemeier E, Slivinski LC, Slonosky V, Squintu A, Tinz B, Valente MA, Walsh S, Wang XL, Westcott N, Wood K, Woodruff SD, Worley SJ
AMS, BAMS December 2017,

Download PDF


Observations are the foundation for understanding the climate system. Yet, currently available land meteorological data are highly fractured into various global, regional, and national holdings for different variables and time scales, from a variety of sources, and in a mixture of formats. Added to this, many data are still inaccessible for analysis and usage. To meet modern scientific and societal demands as well as emerging needs such as the provision of climate services, it is essential that we improve the management and curation of available land-based meteorological holdings. We need a comprehensive global set of data holdings, of known provenance, that is truly integrated both across essential climate variables (ECVs) and across time scales to meet the broad range of stakeholder needs. These holdings must be easily discoverable, made available in accessible formats, and backed up by multitiered user support. The present paper provides a high-level overview, based upon broad community input, of the steps that are required to bring about this integration. The significant challenge is to find a sustained means to realize this vision. This requires a long-term international program. The database that results will transform our collective ability to provide societally relevant research, analysis, and predictions in many weather- and climate-related application areas across much of the globe.