Post-Fire Vegetation Recovery in Iberia Based on Remote-Sensing Information

Gouveia CM, Páscoa P, DaCamara C
Forest Fire Janusz Szmyt, IntechOpen, DOI: 10.5772/intechopen.72594

Download PDF


A previously developed procedure that aims at monitoring the process of vegetation recovery in areas affected by major fire episodes is revisited and assessed in terms of consistency and robustness. The procedure is based on 10-day fields of Maximum Value Composites of the Normalised Difference Vegetation Index (MVC-NDVI). The identification of fire scars is first achieved based on cluster analysis of persistent NDVI anomalies during the year following the fire event. Post-fire vegetation behaviour is then characterised based on maps of recovery rates as estimated by fitting a mono-parametric model of vegetation recovery to NDVI data over each burned scar. Results obtained indicate that reliable estimates of vegetation recovery times may be achieved using time series of NDVI of moderate length. It is also shown that consistent results are obtained when time series are derived either from 1-km spatial resolution data retrieved by the VEGETATION sensor on-board SPOT or from 250-m spatial resolution data from the MODIS instrument onboard Aqua and Terra. The regeneration model is also applied to estimate recovery rates in the case of recurrent fires. Overall results point out that the proposed methodology may play an important role in studying vegetation recovery and species succession after recurrent fires, namely when one vegetation type is replaced by another that regenerates faster, despite being more flammable and therefore increasing the risk of severe and large fires. The robustness of the proposed model highlights its adequacy to assess post-fire vegetation dynamics and therefore the procedure reveals as a promising tool for planning and implementing of better fire management practices before and after fire events.