Rankings of extreme and widespread dry and wet events in the Iberian Peninsula between 1901 and 2016

Margarida L. R. Liberato, Irene Montero, Célia Gouveia, Ana Russo, Alexandre M. Ramos, and Ricardo M. Trigo
Earth Syst. Dynam., 12, 197–210. DOI: 10.5194/esd-12-197-2021

Download PDF


Extensive, long-standing dry and wet episodes are two of the most frequent climatic extreme events in the Iberian Peninsula. Here, a method for ranking regional extremes of persistent, widespread drought and wet events is presented, considering different timescales. The method is based on the multi-scalar Standardized Precipitation Evapotranspiration Index (SPEI) gridded dataset for the Iberian Peninsula. Climatic Research Unit (CRU) data are used to compute the SPEI between 1901 and 2016 by means of a log-logistic probability distribution function. The potential evapotranspiration (PET) is computed using the Penman–Monteith equation. The ranking classification method is based on the assessment of the magnitude of an event, which is obtained after considering both the area affected by the respective dryness or wetness – defined by SPEI values over a certain threshold – and its intensity in each grid point. A sensitivity analysis of the impact of different thresholds used to define dry and wet events is also performed. For both the dry and wet periods, this simple yet robust tool allows for the identification and ranking of well-known regional extremes of persistent, extensive dry and wet periods at different timescales. A comprehensive dataset of rankings of the most extreme, prolonged, widespread dry and wet periods in the Iberian Peninsula is presented for aggregated timescales of 6, 12, 18, and 24 months. Results show that no region in the Iberian Peninsula is more prone to the occurrence of any of these long-term (dry and/or wet) extreme events. Finally, it is highlighted that the application of this methodology to other domains and periods represents an important tool for extensive, long-standing, extreme event assessment worldwide.